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Abstract

■ Recent evidence suggests that during numerical calculation,
symbolic and nonsymbolic processing are functionally distinct op-
erations. Nevertheless, both roughly recruit the same brain areas
(spatially overlapping networks in the parietal cortex) and happen
at the same time (roughly 250 msec poststimulus onset). We
tested the hypothesis that symbolic and nonsymbolic processing
are segregated by means of functionally relevant networks in dif-
ferent frequency ranges: high gamma (above 50 Hz) for symbolic
processing and lower beta (12–17 Hz) for nonsymbolic process-
ing. EEG signals were quantified as participants compared either

symbolic numbers or nonsymbolic quantities. Larger EEG gamma-
band power was observed for more difficult symbolic comparisons
(ratio of 0.8 between the two numbers) than for easier compari-
sons (ratio of 0.2) over frontocentral regions. Similarly, beta-band
power was larger for more difficult nonsymbolic comparisons than
for easier ones over parietal areas. These results confirm the exis-
tence of a functional dissociation in EEG oscillatory dynamics dur-
ing numerical processing that is compatible with the notion of
distinct linguistic processing of symbolic numbers and approxima-
tion of nonsymbolic numerical information. ■

INTRODUCTION

It has been suggested that the ability to process different
numerical representations (e.g., symbolic such as “1,” “2,”
“three,” or nonsymbolic such as a group of 12 dots) acts
as the basis for high-level mathematical skills (Nieder &
Dehaene, 2009; for a review, see, e.g., De Smedt, Noël,
Gilmore, & Ansari, 2013). Evidence shows that humans
have two different mechanisms for processing different
types of numerical representations. One cognitive system is
for processing nonsymbolic numerical representations (e.g.,
groups of dots that represent quantities), termed here
the “nonsymbolic system” (e.g., Mazzocco, Feigenson, &
Halberda, 2011; Piazza et al., 2010; Landerl, Fussenegger,
Moll, & Willburger, 2009). Another numerical cognitive sys-
tem involves the processing of symbols that represent num-
bers (e.g., “1,” “7,” “ten”), termed here the “symbolic system”
(e.g., Vanbinst, Ansari, Ghesquière, & De Smedt, 2016;
Kolkman, Kroesbergen, & Leseman, 2013; Sasanguie, Van
den Bussche, & Reynvoet, 2012; Vanbinst, Ghesquière, &
De Smedt, 2012; Lonnemann, Linkersdörfer, Hasselhorn, &
Lindberg, 2011; De Smedt, Verschaffel, & Ghesquière,
2009; Holloway & Ansari, 2009). Recently, it has been sug-
gested that learnt numerical symbols do not acquire their
numerical meaning from the nonsymbolic numerical system
(e.g., Reynvoet & Sasanguie, 2016) and that the exact sym-
bolic system is behaviorally distinct from the approximate

nonsymbolic one (Sasanguie, De Smedt, & Reynvoet, 2017;
Lyons, Ansari, & Beilock, 2012). Yet, and despite the fact that
these two numerical systems may be behaviorally separate, it
has been shown that the horizontal segment of the intrapa-
rietal sulcus (IPS; Piazza, Pinel, Le Bihan, & Dehaene, 2007),
in close cooperation with posterior and/ormiddle parts of the
IPS (Eger et al., 2009), constitutes the neuronal correlate of
processing both symbolic and nonsymbolic numerical in-
formation (for a review, see Eger, 2016). In addition to
both symbolic and nonsymbolic numerical processing tak-
ing place at approximately the same neural location, it has
also been suggested that they occur at almost the same
time (in the first few hundred milliseconds after onset of
the incoming numerical information, e.g., Smets, Gebuis,
& Reynvoet, 2013; Libertus, Woldorff, & Brannon, 2007;
Temple & Posner, 1998).
This raises the following question: How can function-

ally distinct processes (i.e., the processing of different
numerical representations at different levels of numeri-
cal analysis) take place at the same time (roughly, in the
first few hundredths of a millisecond after stimulus on-
set) and at spatially overlapping neural networks in the pa-
rietal cortices. In other words, what is the neuronal
dynamics that modulates the behavioral distinction be-
tween symbolic and nonsymbolic numerical information?
Here, we aimed to test the hypothesis that symbolic and
nonsymbolic processing are segregated by means of acti-
vation pattern of functionally relevant networks in differ-
ent frequency ranges.University of Haifa
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Symbolic and Nonsymbolic Numerical
Systems: Behavioral

Symbolic and nonsymbolic numerical systems are typi-
cally discussed distinctively. The nonsymbolic system is
considered to have evolutionary roots (Hauser, Tsao,
Garcia, & Spelke, 2003; Dehaene, Dehaene-Lambertz, &
Cohen, 1998) that rely mostly on visuospatial cognitive
abilities (Anobile, Turi, Cicchini, & Burr, 2015; Gallistel
& Gelman, 2000) and involve approximate quantity
processing (e.g., 100 dots that are presented briefly can
be estimated as 90 and not as exactly 100; Lyons, Ansari,
& Beilock, 2015; Barth, Beckmann, & Spelke, 2008).
Estimation of numbers or quantities is related to the
cognitive process employed when a stimulus is com-
posed of a large number of items and is presented briefly
(Pavese & Umiltà, 1998). In contrast, the symbolic system
involves accurate and exact processing of numbers (e.g.,
the written number “100” will be considered exactly “100”
and not “90”—as possible in the nonsymbolic system; De
Smedt et al., 2013) and is influenced by language and cul-
ture (Gunderson, Spaepen, & Levine, 2015; Bender et al.,
2014).
It is yet debatable, however, whether symbolic and non-

symbolic numerical processing continuously interact be-
haviorally and overlap. For example, some argue that
symbolic and nonsymbolic numerical processing enhance
one another over the course of math education (e.g.,
Piazza, Pica, Izard, Spelke, & Dehaene, 2013) and that
the approximate numerical system possibly acts as founda-
tional for math skills (Szkudlarek & Brannon, 2017).
However, a review (De Smedt et al., 2013) as well as a
meta-analysis (Schneider et al., 2017) and scientific inves-
tigations (Sasanguie, Defever, Maertens, & Reynvoet,
2014) have shown that the processes measured by non-
symbolic numerical tasks in scientific labs are not critical
for school-relevant mathematics.

Symbolic and Nonsymbolic Numerical Systems:
Neural Substrates

Thus, most behavioral evidence suggests that symbolic
and nonsymbolic systems are functionally distinct op-
erations (Schneider et al., 2017; Sasanguie et al., 2014;
De Smedt et al., 2013). Nevertheless, it seems that both
recruit roughly the same brain areas. Indeed, many studies
have examined neural anatomical locations of the brain re-
lated to nonsymbolic (e.g., Ansari & Dhital, 2006; Cantlon,
Brannon, Carter, & Pelphrey, 2006; Piazza, Izard, Pinel, Le
Bihan, & Dehaene, 2004) and symbolic numerical systems
(e.g., Notebaert, Nelis, & Reynvoet, 2011; Cohen Kadosh,
Cohen Kadosh, Kaas, Henik, & Goebel, 2007). It has been
suggested that symbolic and nonsymbolic numerical sys-
tems draw from the same neural populations (Santens,
Roggeman, Fias, & Verguts, 2010). Furthermore, a meta-
analysis (Arsalidou & Taylor, 2011) suggested that the
IPS is consistently activated during arithmetic, indicating

that abstract representation is important for symbolic
learnt arithmetic. The notion of spatial neural overlap (in
the IPS) between symbolic and nonsymbolic numerical
systems has also received support from a simulation study
(but with nonsymbolic quantities being only partially re-
cycled by the symbolic numbers; Verguts & Fias, 2004).
Interestingly, a recent meta-analysis (Sokolowski, Fias,
Mousa, & Ansari, 2017) showed that, in addition to the
IPS, other brain regions throughout the parietal cortex
are also engaged in both symbolic and nonsymbolic nu-
merical systems.

Indeed, a common observation is that the brain areas
involved in the different types of processing (i.e., sym-
bolic and nonsymbolic) tend to be largely spatially over-
lapping. Lyons, Ansari, et al. (2015), for example, found
that the IPS is involved in processing numerical informa-
tion regardless of format. However, the way in which
symbolic and nonsymbolic numbers are encoded is dif-
ferent (i.e., because no association was found between
the neural activity evoked by symbolic numbers and the
activity by the corresponding nonsymbolic numerical sys-
tems). Similarly, Bulthé, De Smedt, and Op de Beeck
(2014) found a significant involvement of the same brain
areas in the decoding of both symbolic and nonsymbolic
stimuli (with larger involvement in decoding nonsymbolic
than symbolic number-specific representations). More-
over, in an fMRI adaptation paradigm (a method that allows
investigation of stimulus related processes without requiring
participants to respond to the stimuli presented), Cohen
Kadosh et al. (2011) showed that, as magnitudes changed,
both dots (nonsymbolic) and digits (symbolic) activated the
same intraparietal regions. However, they found no cross-
notation adaptation from nonsymbolic to symbolic num-
bers, suggesting that several different mechanisms within
the same parietal regions are involved in numerical repre-
sentation. Recently, the results of a repetitive transcranial
magnetic stimulation study indicated that this neural spatial
overlap might be because symbolic numbers can be associ-
ated with nonsymbolic numbers in the parietal lobe but only
when relevant for the task. The authors suggested that this
symbolic to nonsymbolic mapping is not a requirement for
all symbolic number processing tasks (Sasanguie, Göbel, &
Reynvoet, 2013). In contrast, it should be noted that, using
multivoxel pattern analysis, Bulthé et al. (2014) observed no
neural overlap between Arabic numerals and dot repre-
sentations. Moreover, there was also no neural indication
of the symbolic distance effect (i.e., better performance
when comparing two numerically distant vs. two numeri-
cally close numbers; Pinel, Dehaene, Rivière, & Le Bihan,
2001; Buckley & Gillman, 1974; Moyer & Landauer, 1967).
The distance effect is typically suggested to act as a signa-
ture for numerical processing, because it is assumed to
originate from an overlap in the representation of numer-
ical stimuli on a mental number line (e.g., Cohen Kadosh
et al., 2005). Thus, multivoxel pattern analysis (Bulthé
et al., 2014) did not directly show no overlap of numerical
processing of symbolic versus nonsymbolic.
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To summarize, most findings point to a neural spatial
overlap between the processing of symbolic and nonsym-
bolic numerical systems; however, the type of inter-
actions between the different modalities has not been
fully proven (for a review, see Reynvoet & Sasanguie,
2016; for meta-analysis, see Sokolowski et al., 2017),
and relatively little is known about the neural generators
of the combined neural signature.

Symbolic and Nonsymbolic Systems:
Neural Timing

The notion of a spatial neural overlap between symbolic
and nonsymbolic numerical systems has also received
support from recorded EEG ERP data. For example,
Gebuis, Kenemans, de Haan, and van der Smagt (2010)
found equal processing time (i.e., P3 waveform; showing
the largest peak within the time window of 300–800 msec
after stimulus presentation), reflecting stimulus evalua-
tion, for both symbolic as well as nonsymbolic numerical
presentations, beginning from fourth grade (Gebuis,
Herfs, Kenemans, de Haan, & van der Smagt, 2009).
Gómez-Velázquez, Berumen, and González-Garrido
(2015) also found equal neural activations for both sym-
bolic as well as nonsymbolic numerical systems in 8- to
10-year-old children with low, average, and high levels
of mathematical achievement. Specifically, and similar
to Gebuis et al. (2009), Gómez-Velázquez et al. reported
no main effect of format in their analysis of the positive
component between 440 and 560 msec (P3) found in
both symbolic and nonsymbolic tasks. Indeed, previous
studies have also found that the main effect of numerical
distance is observed in the P2p waveform in both the
symbolic and nonsymbolic formats (e.g., Libertus et al.,
2007; Temple & Posner, 1998; but see also the P2p in nu-
merical processing when only the nonsymbolic formant
was investigated [Smets et al., 2013; Hyde & Spelke,
2012] or when only symbolic numbers were investigated
[Dehaene, 1996]; however, see Soltész & Szűcs, 2014).
The P2p usually peaks at around 230 msec, and it is
found at temporo-occipital and inferior parietal electrode
groups (Smets et al., 2013). Hence, this early P2p ERP
component has been proposed to “reflect an abstract
and notation-independent neural activation that is in-
voked for both symbolic and nonsymbolic numerical
processing” (Libertus et al., 2007, p. 13).

The review above suggests that the separate behavioral
processes of symbolic and nonsymbolic systems take
place at the same neural time and in spatially overlapping
neural networks. Thus, here we aimed to search for the
distinct neural dynamics that underlies these two possi-
bly distinct behavioral processes.

EEG Oscillations and Cognition

In the past two decades (e.g., Cohen, 2017), general agree-
ment has gradually increased among neuroscientists that

the neuronal oscillations commonly observed in the
ongoing scalp EEG can be taken to be a system-level
image of latent changes in neuronal coherence (see also
Bastiaansen, Mazaheri, & Jensen, 2012; Varela, Lachaux,
Rodriguez, & Martinerie, 2001). The argument is that neu-
ronal oscillations affect the probability of spiking, such
that action potentials have a greater chance of occurring
during episodes of interregional oscillatory unity (Voytek
& Knight, 2015). That is, brain regions activated by cog-
nitive operations show increased coherence (neuronal
cooperation) within certain frequency bands, depending
on the nature and difficulty of the task (e.g., Uhlhaas,
Roux, Rodriguez, Rotarska-Jagiela, & Singer, 2010; Ward,
2003). It is argued that every mental operation is accom-
panied by characteristic coherence patterns (e.g., for a re-
view, see Bastiaansen et al., 2012). These insights can lead
to the establishment of an empirical relationship between
event-related changes in EEG oscillations, on the one
hand, and aspects of cognition, on the other.
The application analysis to EEG data concentrated on

particular phases of oscillatory cycles during numerical
processing may prove a relevant tool for investigating
rhythmic neural activity accompanying numerical func-
tion. Yet, and to the best of our knowledge, only a hand-
ful of studies on a similar topic (i.e., using EEG analysis)
have been performed in numerical cognition studies
(e.g., Hsu & Szűcs, 2012; Berger, 2011; Tzur, Berger,
Luria, & Posner, 2010; Tzur & Berger, 2007).

Specific EEG Oscillations and Numerical Cognition:
Beta and Gamma Bands

Within this context, a number of studies have focused on
the relationship between oscillatory EEG dynamics and
cognitive functions that may also be related to numerical
cognition. For example, beta-band activity (12–30 Hz in
humans) in parietal electrodes has been found to play a sig-
nificant role in visuospatial processing, such as in RTs dur-
ing maze learning (Caplan, Madsen, Raghavachari, &
Kahana, 2001) and in the integration of visual features
(Costa, Duarte, Martins, Wibral, & Castelo-Branco, 2017).
In addition, there is a growing consensus that beta oscilla-
tions are involved in time estimations (Wiener, Parikh,
Krakow, & Coslett, 2018; Kononowicz & van Rijn, 2015).
For example, Kononowicz and van Rijn (2015) have shown
an increase in beta oscillation in central and parietal elec-
trodes 600 msec poststimulus. Using MEG, time–frequency
analysis showed an increase in beta band (16–32 Hz) when
even only looking at numbers compared with nonnu-
merical stimuli over frontal and parietal regions for up to
700 msec. This pattern begins at stimulus onset (Peyton,
Rubin, Pantanowitz, Kleks, & Teicher, 2016). Importantly,
beta signature was also found during temporal counting
(the task was to assess the quantity of discrete items) in a
working memory task, within and across sensory modalities
(visual, auditory, and tactile). Hence, beta oscillations were
suggested to reflect the degree to which quantities were
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estimated (Spitzer, Fleck, & Blankenburg, 2014). Similarly,
upper beta-band amplitude (20–30 Hz) was modulated
when participants estimated which of two sequentially pre-
sented vibrotactile stimuli had a higher frequency (Herding,
Spitzer, & Blankenburg, 2016).
Together, these studies suggest a role for neuronal pat-

terns of activation within the beta band in visuospatial
processing and in time, as well as in numerical estima-
tions. Hence, it may be relevant to study beta-band ac-
tivity during the processing of nonsymbolic numerical
information, because the nonsymbolic numerical sys-
tem has been suggested to rely mostly on visuospatial
cognitive abilities (Gallistel & Gelman, 2000) and to in-
volve quantity approximations (e.g., Lyons, Ansari, et al.,
2015; Barth et al., 2008). In addition, it has been sug-
gested that time and numerical estimations are cogni-
tively linked (Walsh, 2003).
To formulate our neural hypotheses for linguistic process-

ing, we looked at EEG investigations of reading and lan-
guage. Here, studies suggest a link between gamma band
(above 30 Hz) and language (Hauk, Giraud, & Clarke,
2017; Mainy et al., 2008; Crone, Boatman, Gordon, & Hao,
2001), specifically with sublexical, phonological, lexical (e.g.,
Van Berkum, Zwitserlood, Bastiaansen, Brown, & Hagoort,
2004), and syntactic information (for a review, see Kösem &
vanWassenhove, 2017), in addition to the ongoing semantic
unification operations (Bastiaansen & Hagoort, 2006). For
example, an increase in gamma power (40–60 Hz/60–70
Hz) was found across semantically correct (vs. incorrect) sen-
tences (Bastiaansen & Hagoort, 2015; Rommers, Dijkstra, &
Bastiaansen, 2013). Importantly, Salillas, Barraza, and
Carreiras (2015) found that the type of initial language
learning has an effect on basic numeric representations
by showing that gamma-band (43–46 Hz) synchronization
appears 150–250 msec after Basque–Spanish bilinguals
compare pairs of Arabic numerals linked through the
Basque base-20 wording system, but not when the pairs
are related through the base-10 system. This gamma activity
appeared only in bilinguals who learned math in Basque
and not in equivalent proficiency bilinguals who learned
math in Spanish.
In summary, then, there is considerable evidence in

the literature that gamma-band frequencies are pre-
dominantly related to semantic or linguistic operations.
As mentioned earlier, it is suggested that the numerical sym-
bolic system is influenced by language and culture
(Gunderson et al., 2015; Bender et al., 2014). Within the lan-
guage domain and based on previous findings (Vanbinst
et al., 2016), it is suggested here that basic symbolic nu-
merical comparisons involve early cognitive linguistic
processes that are analogous, for example, to phonologi-
cal awareness while reading. Hence, it may be highly rea-
sonable to test the links between gamma-band neural
activation and symbolic processing.
It is therefore intriguing to relate these findings to the

question that we addressed earlier: How does the brain
segregate the processes of symbolic and nonsymbolic

numerical systems, given that both cognitive systems
(symbolic and nonsymbolic) appear to be subserved by
largely overlapping neuronal tissue (in the parietal lobes)
and that they occur roughly in the same time frame
(within a few hundred milliseconds after stimuli presen-
tation)? Tentatively, we therefore propose a frequency-
based segregation of symbolic and nonsymbolic systems
with a specific focus on beta band, which is hypothesized
to be predominantly related to visuospatial and numeri-
cal estimation processing while gamma band is hypothe-
sized to be related to semantic or linguistic operations.
Establishing such a frequency-based segregation would
constitute an important step toward understanding the
neural underpinnings of numerical processing.

The Current Study

In this article, we report a within-participant behavioral
and electrophysiological investigation of the effects of
symbolic (i.e., Arabic numerals) and nonsymbolic (i.e.,
dot arrays) numerical processing. A within-participant
study of basic symbolic versus nonsymbolic numerical
processing is generally uncommon in the field of numer-
ical cognition and specifically in EEG studies. Here, we
administered the well-known measures of nonsymbolic
and symbolic magnitude comparison, during which typi-
cally developing university students compared smaller
versus larger ratios of either two Arabic numerals or
two dot arrays, under otherwise identical experimental
conditions.

One major signature of numerical representations is
that comparisons are subject to a ratio (minimum/maxi-
mum) limit: Accuracy decreases while RT increases as the
ratio of the compared numbers approaches 1 (for a re-
view, see, e.g., Cantlon, Platt, & Brannon, 2009). It is sug-
gested that when the ratio between two numerals is
closer to 1, the numbers to be compared share more cog-
nitive representational overlap compared with numbers
that are further apart (e.g., Vogel, Goffin, & Ansari, 2015)
and hence may act as a signature of the mental number
line. Therefore, it is harder to compare or calculate num-
bers with ratios closer to 1 (e.g., a comparison of 35 and
41, with a ratio of 0.85, is more difficult than a comparison
of 15 and 21, with a ratio of 0.7; e.g., Vogel et al., 2015).
However, when the ratio is closer to 0 (i.e., cognitively
further apart), an approximate strategy can be utilized
(Dehaene & Changeux, 1993). In contrast to previous in-
vestigations (e.g., Bulthé et al., 2014) and to tap approxi-
mate versus exact/linguistic processing, we used large
quantities (ranging from 3 to 90). Thus, here we included
an analysis of numerical ratio to investigate whether neural
activations elicited by the EEG analysis are sensitive to the
linguistic versus approximate dimensions of numerical
magnitudes for both stimulus formats.

Using wavelet analysis, we studied oscillatory EEG sig-
nals to test the hypothesis that symbolic and nonsym-
bolic numerical processing are segregated by means of
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frequency ranges: gamma (50 Hz and up) for exact lin-
guistic processing and beta (10–17 Hz) for approximate
processing. If our proposal is correct, we would expect
relatively larger beta power for larger (0.8) nonsymbolic
numerical ratios than for smaller (0.2) nonsymbolic nu-
merical ratios. Similarly, we would expect relatively larger
gamma power for large symbolic ratios compared with
small symbolic ratios. It is important to note that, even
though the ERP/EEG methodology has poor spatial resolu-
tion, current findings may also suggest or at least point to
symbolic and nonsymbolic processing that is segregated
by means of spatial location. Finally, neuronal oscillations
are considered latent changes in neuronal coherence
(Bastiaansen et al., 2012; Varela et al., 2001), which affect
the probability (Voytek & Knight, 2015) of mental opera-
tions (e.g., for a review, see Bastiaansen et al., 2012) such
as numerical processing. Hence, we assume that both the
currently hypothesized beta and gamma effects would
appear earlier than the P2p ERP component, which is typi-
cally found in both symbolic and nonsymbolic numeri-
cal comparisons (Gómez-Velázquez et al., 2015) and is
suggested to indicate fast and automatic processing of
numerical magnitudes (Dehaene, 1996).

METHODS

Participants

In previous neural analyses of basic numerical processing
with adults, researchers used 24 participants (Smets
et al., 2013; Gebuis & Reynvoet, 2012). Gebuis and
Reynvoet (2012) found a medium effect size for numer-
osity on P2p at parietal areas (ηp

2 = .24–.39). Using
G*Power 3.1.9.2, we calculated that, at the current setup,
with an expected effect size f of 0.4 (a conservative view
instead of the effect size f of 0.56 reported by Gebuis &
Reynvoet, 2012), a sample size of 23 would be sufficient.
As we expected that 10% of participants would drop at
analysis, we recruited 26 participants.

Thus, 26 right-handed female university students par-
ticipated in the experiment in exchange for a fee or
course credits. All reported normal or corrected-to-
normal vision, with no history of neurological problems.
Two participants were rejected because of excessive
noise on high frequencies. Thus, behavior and ERPs from
24 participants (mean age = 26.5 years, SD = 4.96 years)
were analyzed.

Ethics Statement

The recruitment, payment, tasks, and overall procedure
were authorized by the Research Ethics Committee of
Haifa University and by the Research Ethics Committee
of the Faculty of Education. All methods and experi-
mental protocol were approved by the Research Ethics
Committee of Haifa University (#123/09) and by the
Research Ethics Committee of the Faculty of Education

(#144/14) and were carried out in accordance with the
approved guidelines. In addition, informed consent was
obtained from all participants.

Procedure—General

Participants performed numerical comparisons presented
as arrays of dots (nonsymbolic) or Arabic numerals (sym-
bolic). The numerical comparisons task (symbolic and
nonsymbolic) was administered while both behavioral
measures (accuracy rates [ACC] and RTs) as well as
EEGs were recorded. All materials were computerized
and presented with E-Prime 2.0 (Psychological Software
Tools) on an HP computer, using a Samsung S23A950D
23-in. screen display with a resolution of 1024 × 768.

Numerical Comparisons: General Description of Both
Tasks (Symbolic and Nonsymbolic)

We conducted nonsymbolic and symbolic numerical com-
parison tasks developed on the basis of the widely used
numerical comparison task (e.g., with manipulation of nu-
merical ratio [Sasanguie et al., 2017; Price & Fuchs, 2016]
or manipulation of numerical distance [Xenidou-Dervou,
Molenaar, Ansari, van der Schoot, & van Lieshout, 2017]).
Here, the ratio between the two compared numeros-

ities was manipulated. It should be noted that previous
studies investigating the links between number com-
parison and brain activation frequently used numerical
distance (e.g., Gebuis et al., 2009; Pinel et al., 2001) rather
than numerical ratio as an independent variable. However,
because the current main research question involves a
comparison between symbolic and nonsymbolic represen-
tations and because manipulation of ratio is the only pos-
sible course of action in the case of large nonsymbolic
quantities, we manipulated ratio and not distance. Im-
portantly, numerical ratio and distance are highly corre-
lated (e.g., Bugden, Price, McLean, & Ansari, 2012). Similarly,
in this study, the average numerical distance was 38 for
the small ratio trials and 6 for the large ratio trials.
Consistent with this, the correlation between ratio and
distance for the trials used was very high, r(80) =
−.674, p < .001.
As in other recent studies (Sasanguie et al., 2017; Price

& Fuchs, 2016), in the current study two types of ratio
were used, small (0.2) and large (0.8), which allowed us
to model the effect of symbolic and nonsymbolic numer-
ical ratios on the oscillations’ response; ratios of 0.4 and
0.6 were used as fillers, a common practice in the EEG
literature (e.g., Núñez-Peña & Suárez-Pellicioni, 2014).
Thus, each experimental task consisted of 80 experi-

mental trials and 80 fillers. Feedback on accuracy was
provided only during practice trials. In each trial, the
participant saw two numerosities (i.e., either two Arabic
numerals in the symbolic task or two dot arrays in the
nonsymbolic task), 0.5° to the right and the left side of
the screen (see Figure 1).
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Before each task (symbolic and nonsymbolic), the par-
ticipant completed eight practice trials. In both the prac-
tice and experimental tasks, participants were asked to
identify which numerosity was larger by pressing the left
or right button on a response box situated in front of
them. In half of the trials, the larger numerosity was pre-
sented on the right side of the screen and in the other
half, on the left. Participants were instructed to respond
as correctly and as fast as possible.
Each condition began with a fixation circle (we avoided

the use of a cross “+” or asterisk “*” to prevent asso-
ciation with addition or multiplication) for 500 msec,
followed by an intertrial interval of 200–250 msec to pre-
vent contingent negative variation (Tecce, 1972). The re-
sponse interval lasted until an answer was provided,
followed by an intertrial interval of 700 msec.

Nonsymbolic Numerical Comparisons

As depicted in Figure 1, the nonsymbolic stimuli were
composed of two dot arrays (white on a black back-
ground) presented simultaneously. There were five
options for each amount, selected randomly. Each pic-
ture’s size was 196 × 196 pixels. Both pictures were pre-
sented within a visual angle of 7.6°.

Nonsymbolic task: Control of continuous visual
properties. It should be noted that each nonsymbolic
stimulus has, in addition to its numerical value, continu-
ous visual properties. The continuous visual properties
consist of convex hull (the contour of the smallest poly-
gon built around the dots), total dots, surface, average
dot size, density, and contour (the smallest circle contain-
ing all the dots).
The continuous visual properties of dot arrays are

usually correlated with each other (Leibovich & Henik,
2014). In some cases, this correlation can result in multicol-
linearity. Multicollinearity is commonly assessed using three
tests (Meyers, Gamst, & Guarino, 2006): cross-correlation
> .8, variance inflation factor (VIF) > 10, and tolerance
< 0.1 (Leibovich & Henik, 2014). Multicollinearity can

yield regression weights that are poor reflections of vari-
able relationships and complex results that are hard to
interpret (Mason & Perreault, 1991). As no indication of
multicollinearity was available in our data (see Tables 1
and 2), we performed a stepwise regression to check
for effects of continuous properties on RT and accuracy.

Two multiple stepwise regressions were performed to
evaluate whether ratio and continuous properties are able
to predict RT and ACC. The regression was conducted in
two blocks; in the first block, the ratio was entered and
found significant, r = .681, F(1, 116) = 100.448, p <
.001. Approximately 46.4% of the variance in the RT was
due to the change in ratio. In the second block, all five
continuous properties were entered using stepwise condi-
tioning ( p < .05 for enter, p > .1 for remove), and total
dot surface was the only one found to have significant
added value, F(2, 115) = 54.764, p< .001, with added var-
iance explaining 2.4%, for a total of 48.8% of the explained
variance in RT.

In the first block, ratio was entered to predict accuracy.
Ratio was strongly correlated with accuracy, r= .573, F(1,
116) = 56.737, indicating that ratio can explain 32.8% of
the variance in accuracy. In the second block, average dot
size was found to have a significant added value of 5.8%,
F(2, 115) = 36.217, for a total of 37.6% of the total vari-
ance explained. These tests indicate that participants
responded primarily based on numerical ratio and not
based on the visual continuous properties.

Symbolic Numerical Comparisons

The symbolic comparison task was identical to the
nonsymbolic task, with the key difference being that
the corresponding Arabic numerals now replaced the
dot stimuli. All stimuli were presented in Courier New
size 36.

Figure 1. An example of a nonsymbolic comparison.

Table 1. Cross-correlation between Continuous Visual
Properties

1 2 3 4 5

1. Convex hull — .701** −0.171 .218* .771**

2. Total dot surface — .402** .550** .544**

3. Density — .215* −.224*

4. Average dot size — .216*

5. Contour —

n = 118. A significant correlation was found between convex hull and
total dot surface, average dot size, and contour; total dot surface and
density, average dot size, and contour; density and average dot size
and contour; and average dot size and contour. Although continuous
visual properties are cross-correlated, no correlation exceeds the value
of .8. Thus, cross-correlation analysis reveals no sign of multicollinearity.

*p < .5.

**p < .01.
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Data Acquisition and Analysis

EEG Recording

The EEG analog signals were recorded continuously
(from DC with a low-pass filter set at 100 Hz) from 64 Ag–
AgCl pin-type active electrodes mounted on an elastic cap
(Biosemi, www.biosemi.com/headcap.htm), according to
the extended 10–20 system. All electrodes were referenced
during recording to a common mode signal electrode be-
tween POz and PO3 and were subsequently re-referenced
digitally (see Data Processing section below). Eye move-
ments, as well as blinks, were monitored using bipolar
horizontal and vertical EOG derivations via two pairs of elec-
trodes, with one pair attached to the external canthi and the
other to the infraorbital and supraorbital regions of the
right eye. Both EEG and EOG were digitally amplified
and sampled at 512 Hz, using a Biosemi Active II system
(www.biosemi.com).

Data Processing

Data were analyzed using Brain Vision Analyzer software
(Brain Products). Raw EEG data were initially 0.5 Hz
high-pass and 30 Hz low-pass filtered (24 dB) and re-
referenced off-line to the digital average of the 64 elec-
trodes. For the wavelet analysis, a 100-Hz low-pass filter
with 50-Hz notch was used on the raw data, instead of the
30-Hz low-pass on the raw data. EEG deflections resulting
from eye movements and blinks were corrected using
an independent component analysis procedure ( Jung
et al., 2000). Remaining artifacts exceeding ±100 μV in
amplitude, a voltage step of over 50 μV, or low activity of
under 0.5 μV change over 100 msec were rejected.

Analysis

Behavioral Analysis

Similar to previous studies (Pfister, Schroeder, & Kunde,
2013; Kiesel & Vierck, 2009), for the RT analysis, incorrect
trials and outliers were omitted. Trials were counted as out-
liers when the RT deviated from the corresponding task–
ratio mean by more than 2.5 SDs, calculated separately

for each participant. The number of omitted outlier trials
ranged from 6 to 11 per participant. Accuracy rates (ACC)
were defined as the amount of correct trials per ratio, re-
gardless of RTs. A repeated-measures ANOVA with Task
(symbolic, nonsymbolic) and Ratio (0.2 and 0.8) was per-
formed to determine the effect of ratio on RT and ACC.

ERP Analysis

For reasons of focus and based on prior scientific findings
such as the work of Smets et al. (2013) (as well as Gebuis &
Reynvoet, 2012; Dehaene, 1996, see Introduction), we in-
vestigated the involvement of P2p waveform with symbolic
and nonsymbolic numerical comparisons (e.g., Gómez-
Velázquez et al., 2015). Based on Gebuis and Reynvoet
(2012) and Smets et al. (2013), we analyzed parieto-
occipital electrodes: O1, O2, PO3, PO4, PO7, and PO8
(see Figure 2).
Accordingly, ERPs were analyzed in two separate analy-

ses of a mixed design three-way ANOVA, Task (2) × Ratio
(2) × Electrode (6). One analysis included latencies as
within-participant variables, and the other included ampli-
tude. The averaged segments were baseline-corrected to
200 msec before stimulus onset. For each participant,
the peak of the P2p was determined as the most positive
peak between 180 and 300 msec. Subsequent visual scru-
tiny ensured that this value represented real peaks rather
than end points of the epoch (Foti, Hajcak, & Dien, 2009;
Campanella et al., 2002).

Wavelet Analysis

Data were segmented into epochs, starting from 500 msec
before stimulus onset until 1000 msec poststimulus. A
continuous wavelet transform with a standardized Morlet
complex (c = 5) was chosen (Van der Lubbe & Utzerath,
2013)—for the high frequencies, 30 steps ranging from
30 to 80 Hz in logarithmic steps, and for the low frequen-
cies, 18 steps ranging from 12 to 30 HZ in logarithmic steps.
Gabor normalization was used in both cases (Van der
Lubbe & Utzerath, 2013). Channels were baseline-corrected
based on the 200 msec before stimulus and normalized

Table 2. Tolerance and VIF Analysis of Continuous Visual Properties

1 2 3 4 5

Tolerance VIF Tolerance VIF Tolerance VIF Tolerance VIF Tolerance VIF

1. Convex Hull — — 0.402 2.486 0.272 3.681 0.216 4.621 0.224 4.470

2. Total dot surface 0.322 3.106 — — 0.343 2.914 0.222 4.503 0.152 6.579

3. Density 0.556 1.800 0.877 1.140 — — 0.414 2.414 0.400 2.502

4. Average dot size 0.682 1.466 0.874 1.144 0.638 1.567 — — 0.588 1.699

5. Contour 0.460 2.173 0.391 2.560 0.402 2.488 0.384 2.603 — —

Tolerance values range from 0.152 to 0.682; none dips below 0.1. VIF scores range from 1.14 to 6.579; none exceeds a value of 10. Tolerance and VIF
analysis of the continuous visual properties reveal no sign of multicollinearity.
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based on the −500 to −200 msec time window (Van der
Lubbe & Utzerath, 2013). Please note that the baseline cor-
rection and normalization cannot be done on the same
time points as a baseline function and set the total of the
values in the defined time domain to 0, and if a normaliza-
tion function were to be performed at the same time, it
would try to classify this 0 total as 100%. The wavelet
analysis was performed on single trials, and the resulting
single-trial spectrograms of the absolute values were
averaged. These averages thus include the activity that is
phase locked to the stimulus (Yuval-Greenberg, Tomer,
Keren, Nelken, & Deouell, 2008). For the high-frequency
analysis and based on Schadow et al. (2007) and Völker
et al. (2018), as well as based on a meta-analysis of fMRI
studies that compared symbolic and nonsymbolic numbers
(Sokolowski et al., 2017), the following electrodes, FC1,
FC2, FC3, FC4, and FCz (i.e., frontocentral cluster), with a
time range of 140–180 msec poststimulus were selected.
Please note that wavelet analysis on four to five electrodes
is a common practice (e.g., Yuval-Greenberg et al., 2008;
Demiralp et al., 2007). The use of these specific electrodes
as well as this specific time window was ultimately data
driven yet is also supported by previous neural oscillation
findings with schizophrenic patients (Koychev, El-Deredy,
Mukherjee, Haenschel, & Deakin, 2012; Koychev, Deakin,
Haenschel, & El-Deredy, 2011). We extracted Layers 17–30
(51–80 Hz). For the low-frequency analysis and based on
previous studies (e.g., Erickson, Albrecht, Robinson, Luck,
& Gold, 2017), we analyzed a parietal cluster, including
the P1, P2, Pz, and POz electrodes (similar clusters can be
found in Avancini, Soltész, & Szűcs, 2015; Szűcs & Soltész,
2008), with a data-driven optimized time window of 75–
150 msec poststimulus presentation. Namely, given that

each participant showed a P2p peak that ranged be-
tween 180 and 300 msec and because we are looking
for frequency-based activation, before P2p wave (based
on the current research question), we chose a second
and more narrow time window ranging between 75 and
150 msec poststimulus presentation.

We extracted Layers 1–4 (12–17 Hz; for analysis of a
broader time window and frequency range, see Appen-
dices A1 and A2).

As mentioned above, part of the preprocessing in-
cluded a 50-Hz notch. This digital suppression of frequen-
cies can result in misinterpretation of the data. Hence,
many studies (Karch et al., 2016; Minzenberg, Yoon,
Cheng, & Carter, 2016; Ball et al., 2008) analyzed only the
upper gamma (frequency> 51/55/60 Hz) or lower (frequen-
cy < 40/45/49). Here, we focus on higher cognitive func-
tions; therefore, we chose to focus on the high gamma
frequencies (Uhlhaas, Pipa, Neuenschwander, Wibral, &
Singer, 2011; Mainy et al., 2008).

A three-way ANOVA with the factors of Task (symbolic,
nonsymbolic), Ratio (0.8, 0.2), and Electrodes (4 for
beta/5 for gamma) was conducted on the average power.

Bayesian Statistics

We followed up the results using Bayesian statistics.
Specifically, we computed Bayes factors (BF), which ex-
press the ratio between the evidence in favor of the
hypothesis relative to the null hypothesis. BFs were cal-
culated according to Dienes, Coulton and Heather (2018)
using a half-normal model of H1.

For the behavioral results, we used priors taken from
Lyons et al. (2012, Experiment 1). For the P2p, priors were
taken from Libertus et al. (2007, Experiment 1 for symbolic
P2p and Experiment 2 for nonsymbolic P2p). As no priors
could be achieved for the beta- and gamma-band analysis,
we used JASP 0.9.1 (JASP Team, 2018), with default values
(Arciuli & Bailey, 2019; Trueblood et al., 2018). See Table 3
for BF calculations.

RESULTS

Behavioral

RT

A repeated-measures ANOVA was performed to deter-
mine the effect of ratio on RT. Results revealed a signif-
icant main effect for Ratio, F(1, 23) = 33.038, p < .001,
ηp
2 = .59, BF10 = 88.76 (see Figure 3A) and Task × Ratio

interaction, F(1, 23) = 7.838, p < .01, ηp
2 = .254, BF10 =

3.62, with no main effect for Task, F(1, 23) = 3.007, ns,
BF10 = 2.38.

Post hoc t tests on the different tasks revealed a signif-
icant increase in RT in both symbolic, t(23) = 11.291, p<
.001, BF10 > 100,000, and nonsymbolic conditions, t(23) =
4.244, p < .001, BF10 = 14.53, between the 0.2 ratio
(sym: M = 571.219, SE = 17.059; nonsym: M = 509.232,

Figure 2. Layout of electrode used.
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SE = 17.059) and the 0.8 ratio (sym: M = 741.133, SE =
21.086; nonsym: M = 1055.713, SE = 141.409). A BF of
more than 3 is considered substantial evidence for H1,
whereas a BF of less than 1/3 is considered substantial
evidence for the null hypothesis ( Jeffreys, 1961). The
Bayesian analysis confirms that the probability that ratio
affected RTs is over 100,000 times more likely for the sym-
bolic stimuli and 14 times for the nonsymbolic than the
null hypothesis.

Accuracy Rates

A repeated-measures ANOVA was performed to determine
the effect of ratio on accuracy rates. Results revealed a signif-
icant main effect for Ratio, F(1, 23) = 124.92, p< .001, ηp

2 =
.845, BF10 > 100,000 (see Figure 3B); task, F(1, 23) = 22.504,
p < .001, ηp

2 = .495, BF10 = 16,557.37; and Task × Ratio in-
teraction, F(1, 23) = 48.623, p < .001, ηp

2 = .679, BF10 >
100,000.

Post hoc t tests on the different tasks revealed the
typical ratio effect, as indicated by a significant decrease
in accuracy in both symbolic, t(23) = 6.156, p< .001, BF10 =
215.74, and nonsymbolic conditions, t(23) = 10.17, p< .001,

BF10 > 100,000, between the 0.2 ratio (sym: M= 99.58%,
SE= 0.169%; nonsym:M= 98.92%, SE= 0.834%) and the
0.8 ratio (sym: M = 95.38%, SE = 0.678%; nonsym: M =
84.29%, SE = 1.814%). BF confirms that ratio was the
main reason for the difference in accuracy rates.

ERP Data

Repeated-measures ANOVAs of mean amplitudes and latency
of parieto-occipital electrode groups in the 180–300 msec
poststimulus time windows (P2p), revealed a significant
effect for Ratio on both amplitude and latency (amplitude:
F(1, 23) = 24.217, p < .001, ηp

2 = .513, BF10 = 42,798.21;
latency: F(1, 23) = 25.126, p < .001, ηp

2 =.522; Figure 4)
as well as Task (amplitude: F(1, 23) = 15.929, p < .001,
ηp
2 = .409, BF10 = 867.57; latency: F(1, 23) = 20.366, p <

.001, ηp
2 =.470), with no interaction (amplitude: F(1, 23) <

1, ns; latency: F(1, 23) < 1, ns, BF10 = 0.63).
Because of the a priori hypothesis, as well as based on pre-

vious literature (e.g., Gebuis & Reynvoet, 2012; Libertus et al.,
2007) and current behavioral findings, we calculated the dif-
ferent ratios in each task separately. Repeated-measures
ANOVA found a significant effect for Ratio in both tasks
(symbolic: amplitude, F(1, 23) = 13.731, p < .001, ηp

2 =
.374, BF10 = 311.21; latency, F(1, 23) = 8.594, p < .01,
ηp
2 =.272; nonsymbolic: amplitude, F(1, 23) = 9.732, p <

.01, ηp
2 = .297, BF10 = 35.22; latency, F(1, 23) = 12.996,

Table 3. BF Calculations

Priors
Sample
Mean

Sample
SE BF10

RT

Ratio 56.5 358 62 88.76

Task 34.5 126 73 2.38

Ratio × Task 69 377 134 3.62

Symbolic 41 170 15 > 100,000

Nonsymbolic 72 546 129 14.53

ACC

Ratio 10.7% 9.4% 0.8% > 100,000

Task 9.4% 5.9% 1.2% 16,557.37

Ratio × Task 20.5% 10.4% 1.5% > 100,000

Symbolic 0.4% 4.2% 0.7% 215.7%

Nonsymbolic 20.9% 14.6% 1.4% > 100,000

P2

Ratio 0.95 1.192 0.242 42,798.21

Task 0.016 1.455 0.365 867.57

Ratio × Task 0.7 0.06 0.51 0.63

Symbolic 1.3 1.222 0.330 311.21

Nonsymbolic 0.6 1.162 0.373 35.22

Figure 3. Behavioral effects: RT and accuracy rates in the comparison
tasks. (A) RT in msec, significant effect for task, ratio, and interaction.
Significant effect for ratio in both symbolic and nonsymbolic tasks.
(B) Accuracy rates, significant effect for Task, Ratio, and interaction.
Significant effect for Ratio in both tasks. ***p < .001.
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p < .001, ηp
2 =.361), with higher ratios in each of the

tasks, resulting in a more positive delayed peak.
In addition, a significant effect for Electrode (amplitude:

F(1, 23) = 9.874, p < .001, ηp
2 = .3, BF10 > 100,000; la-

tency: F(1, 23)= 4.099, p< .01, ηp
2 =.151, BF10= 0.476), Elec-

trode × Task only in amplitude (amplitude: F(1, 23) =
4.0316, p < .01, ηp

2 = .149, BF10 = 3.588; latency: F(1,
23) = 1.038, ns, BF10 = 0.017), and Electrode × Ratio
(amplitude: F(1, 23) = 2.583, p < .05, ηp

2 = .1, BF10 =
0.068; latency: F(1, 23) = 3.997, p < .01, ηp

2 =.148,
BF10 = 0.118), with no Electrode × Task × Ratio inter-
action (amplitude: F(1, 23) < 1, ns, BF10 < 0.000001; la-
tency: F(1, 23) < 1, BF10 < 0.000001). Overall, despite
difference between the electrodes, when looking at the
effect sizes and Bayesian factors together, none of the
interaction seems to point in a certain direction.

Wavelet Data

Gamma Band

Repeated-measures ANOVA of the average high-gamma
power revealed a significant effect for Ratio, F(1, 23) =
9.293, p < .01, ηp

2 =.288, BF10 = 1,226.198 (see
Figure 5A), as well as Task × Ratio interaction, F(1, 23) =
5.374, p< .05, ηp

2 =.189, BF10 = 22.732, with no main effect
for Task, F(1, 23) = 1.556, ns, BF10 = 1.022. No main effect
for Electrode, F(4, 92) < 1, ns, BF10 = 0.014, or interactions
were present (Task: F(4, 92)<1,ns, BF10=0.017; Ratio: F(4,
92) = .098, ns, BF10 = 0.013; Task × Ratio: F(4, 92) = .735,
ns, BF10 < 0.001).
Post hoc tests revealed that the source of the inter-

action was a significant difference in the symbolic task,
F(1, 23) = 9.839, p < .01, ηp

2 =.3, BF10 > 100,000, as the
higher (symbolic) ratios elicit an increase in the gamma
power. In contrast, no such difference (of ratios) was
found in the nonsymbolic task, F(1, 23) < 1, ns, BF10 =
0.222. The BF analysis indicates that the Task × Ratio in-
teraction is 22.732 times more likely than the null hypoth-

esis. In the symbolic condition, a BF greater than 100,000
(i.e., over 100,000 times more likely than the null hypoth-
esis) was found, whereas in the nonsymbolic condition,
the BF was 0.222. Hence, the Bayesian analysis clearly
provides substantial evidence for a ratio effect for the
symbolic but not for nonsymbolic ratios in the gamma
band.

Beta Band

Repeated-measures ANOVA of the average low-beta
power revealed a significant effect for Task, F(1, 23) =
9.378, p < .01, ηp

2 = .29, BF10 = 9648.012 (see
Figure 5B), as well as Task × Ratio interaction, F(1, 23) =
4.745, p < .05, ηp

2 =.171, BF10 = 5.756, with no effect for
Ratio, F(1, 23) = 2.553, ns, BF10 = 0.253.

In addition, over this parietal cluster, there was a sig-
nificant effect for Electrode, F(3, 69) = 59.042, p < .001,
ηp
2 =.72, BF10 > 100,000. Pz showed lower beta power

compared with POz ( p < .05), and both showed lower
power compared with P1 and P2 ( p < .05). However,
all interactions with electrodes were not significant (task:
F(3, 69) = 1.417, ns, BF10 = 0.08; ratio: F(3, 69) = 1.956,
ns, BF10 = 0.07; Task × Ratio: F(3, 69) = 1.947, ns, BF10 <
0.001). This finding suggests that despite global power
difference, the electrode in the parietal cluster respond
similarly under the different conditions (e.g., note the
BF ranging from 0.08 to 0.001).

Post hoc tests revealed that the source of the inter-
action is a significant difference of ratios in the nonsym-
bolic task, F(1, 23) = 6.448, p < .05, ηp

2 =.219, BF10 =
3.703, with higher ratios showing a significant increase
in the beta power. In contrast, no such difference was
found in ratios of the symbolic task, F(1, 23) < 1, ns,
BF10 = 0.223.

The BF analysis indicates that the Task × Ratio interac-
tion revealed a BF of 5.756. Whereas in the symbolic task,
the BF was 0.223, in the nonsymbolic task, the BF was
3.703. Therefore, the Bayesian analysis supports the sig-
nificant evidence for a ratio effect for the nonsymbolic
but not for symbolic ratios in the beta band.

Exclusivity of Effects? Analyzing Gamma-band Power
Changes over the Parietal Cluster and Beta-band Power
Changes over the Frontocentral Cluster

Repeated-measures ANOVA on the average high-gamma
power in the parietal cluster revealed no significant effect
for Task, F(1, 23) < 1, ns; ratio, F(1, 23) = 1.113, ns; nor
Task × Ratio interaction, F(1, 23) < 1, ns. We found a
significant effect for Electrode, F(3, 69) = 3.334, p <
.05, ηp

2 = .127); however, all interactions with electrodes were
not significant (task: F(3, 69) < 1, ns; ratio: F(3, 69) = 1.289,
ns; Task × Ratio: F(3, 69) < 1, ns).

A similar pattern was found in the frontocentral beta anal-
ysis. Repeated-measures ANOVA on the average low-beta
power revealed no significant effect for Task, F(1, 23) < 1,

Figure 4. P2p wave. Figure 4 shows average ERPs for symbolic and
nonsymbolic tasks in 0.2 and 0.8 ratios. A significant main effect for Task
and Ratio (amplitude: p < .001; latency: p < .001). Significant effect
for Ratio in both tasks (amplitude: p < .001; latency: p < .001).
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Figure 5. Wavelet analysis.
(A) Increased gamma oscillations
in the 0.8 ratio in the symbolic
task at frontocentral cluster,
p < .01. (B) Increased beta
oscillations in the 0.8 ratio in the
nonsymbolic task at parietal
cluster, p < .05.
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ns; ratio, F(1, 23) < 1, ns; nor Task × Ratio interaction,
F(1, 23) < 1, ns. We found a significant effect for Electrode,
F(4, 92) = 2.918, p < .05, ηp

2 = .113, with all interactions
with electrodes not significant (task: F(4, 92) < 1, ns; ratio:
F(4, 92) < 1, ns; Task × Ratio: F(4, 92) < 1, ns).

Gamma and Beta-band Latencies Compared
with P2p

Four single-sample t tests were conducted on the average
P2p latency (i.e., separately for symbolic and nonsym-
bolic tasks in ratios 0.2 or 0.8; see Appendix B) compared
with the end point of the relative wavelet analysis time
frame (180 msec symbolic gamma, 150 msec nonsymbolic
beta). All t tests were significant (symbolic 0.2: t(23) = 9.062,
p < .001, BF10 > 100,000; symbolic 0.8: t(23) = 10.29,
p < .001, BF10 > 100,000; nonsymbolic 0.2: t(23) =
10.982, p < .001, BF10 > 100,000; nonsymbolic 0.8: t(23) =
9.56, p < .001, BF10 > 100,000). These findings clearly
show that both beta and gamma oscillations came before
the P2p wave.

DISCUSSION

Symbolic and nonsymbolic numerical processing, which
play a crucial part in arithmetic skills (e.g., De Smedt
et al., 2013), have been shown to be behaviorally distinct
operations (e.g., Sasanguie et al., 2017; Lyons et al.,
2012). Nevertheless, both take place at roughly the same
neural place (in spatially overlapping parietal networks,
e.g., Eger, 2016; as well as in additional brain regions,
e.g., Sokolowski et al., 2017) and at the same time (in
the first few hundred milliseconds after onset of the in-
coming numerical information; e.g., Smets et al., 2013;
Libertus et al., 2007; Temple & Posner, 1998). Similar
findings were also replicated in the current study show-
ing the P2p ERP component during both symbolic and
nonsymbolic numerical comparisons. Specifically, this is
indicated by the main and simple effects of Ratio with
no Task (symbolic/nonsymbolic) × Ratio interaction (a
nonsignificant interaction that was also supported by a
Bayesian analysis, showing anecdotal evidence that there
is no effect). The P2p ERP component is considered an
electrophysiological signature of symbolic as well as non-
symbolic numerical processing and, specifically, of the
symbolic and nonsymbolic ratio or distance effects
(Libertus et al., 2007). Here, we aimed to search for the
distinct neural dynamics that underlies the separate be-
havioral processes of symbolic and nonsymbolic numeri-
cal information known, so far, to take place at the same
neural time and in spatially overlapping neural networks.
The current analysis was primed by earlier results from

studies addressing modulation of gamma-band power in
linguistic tasks (e.g., Hauk et al., 2017; Mainy et al., 2008;
Crone et al., 2001) versus modulation of beta-band power
in visuospatial (Costa et al., 2017; Caplan et al., 2001), nu-
merical (Spitzer et al., 2014), or time (Wiener et al., 2018;

Kononowicz & van Rijn, 2015) estimations. Thus, here we
tested the hypothesis that numerical linguistic and quantity
estimations are segregated by means of neuronal frequen-
cies of functionally relevant neural networks (frontocentral
for linguistic vs. parietal for approximation) in different fre-
quency ranges: gamma (50 Hz and up) for exact linguistic
processing and lower beta (10–17 Hz) for quantity estima-
tions. In the analysis of power changes across (symbolic or
nonsymbolic) numerical comparisons, larger EEG gamma-
band power was observed for difficult comparisons within
the symbolic numerical system (ratio of 0.8) than for nu-
merically easier symbolic ones (ratio of 0.2). Similarly,
beta-band power was larger for nonsymbolic numerically
difficult comparisons (ratio of 0.8) than for nonsymbolic nu-
merically easier ones (ratio of 0.2). Thus, we argue that the
effects of early beta- and gamma-band power reflect a rapid
context-based analysis of exact linguistic (symbolic) or
quantity estimation (nonsymbolic).

Interestingly, observed beta- and gamma-band effects
began 75 and 140 msec and finished 150 and 180 msec
after stimulus onset (respectively), that is, both processes
ended significantly earlier than the P2p ERP component.
Hence, current findings suggest that gamma and beta
neural oscillations act as latent and distinct mechanisms,
which act as “translators” of symbolic and nonsymbolic
stimuli, for a later process of numerical processing.

The current findings suggest that numerical analysis of
symbolic and nonsymbolic information occurs through a
common mechanism (e.g., a mental number line) as be-
haviorally indicated by the ratio or distance effect, and
neurophysiology by the P2p ERP waveform. Yet, results
also indicate that early differences in oscillations of spe-
cific frequency bands reflect the format (symbolic or non-
symbolic) of the incoming information. Note, that when
we conducted additional beta and gamma analysis at the
time window of the P2p, results showed insignificant ef-
fects of task, ratio, or interaction (see Appendices A3 and
A4), which suggests an early neural analysis (before P2p).

Indeed, neuronal oscillations are considered latent
changes in neuronal coherence (Bastiaansen et al., 2012;
Varela et al., 2001), which affect the probability (Voytek &
Knight, 2015) of mental operations (e.g., for a review, see
Bastiaansen et al., 2012). Against this background, it is
found here that both beta and gamma effects appear earlier
than the P2p ERP component, which is typically found in
both symbolic and nonsymbolic numerical comparisons
(Gómez-Velázquez et al., 2015) and has been suggested
to indicate fast and automatic processing of numerical mag-
nitudes (Dehaene, 1996) or, as we interpret it here, an early
context-based analysis of the numerical meaning.

Possible Role of Beta Frequency Range in
Quantity Comparisons

In our view, our data strengthen the notion that beta-
band power is related to numerical structure building
at the nonsymbolic numerical level, revealing itself
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behaviorally as estimation and cognitively as the non-
symbolic ratio effect. To a certain degree, the observed
effects in the beta frequency range essentially replicate
previously reported results with visuospatial (Costa et al.,
2017; Caplan et al., 2001), numerical (Spitzer et al., 2014),
and time (Wiener et al., 2018; Kononowicz & van Rijn,
2015) estimations and are in line with the hypothesis that
beta-band neuronal power is related to nonsymbolic quan-
tity estimations. Current beta-band results further extend
previous findings by indicating that different nonsymbolic
numerical ratios elicit different levels of beta-band power.
Namely, beta-band power increases during difficult non-
symbolic numerical comparisons (ratio of 0.8) compared
with easier comparisons (ratio of 0.2). This suggests that
when the nonsymbolic numerical system is confronted
with a difficult quantitative analysis between two to-be-
compared quantities (larger ratios), EEG beta power in-
creases. Yet, beta power augmentation was absent for
nonsymbolic quantitative relations that can be estab-
lished more easily (smaller ratios). Taking the contrast
between the ratio conditions as our prime marker for non-
symbolic numerical cognitive representation (for a review,
see Cantlon et al., 2009; e.g., Vogel et al., 2015), we inter-
pret this pattern as increased efforts to estimate the more
difficult comparisons (larger ratios) compared with the
easier ones.

The current finding, linking beta-band activation and
nonsymbolic numerical comparisons, is similar to the pat-
tern observed in a study of parametric oscillatory working
memory activity reported by Spitzer et al. (2014). They
found that prefrontal beta modulations are linked to nu-
merical estimation of discretely presented items (in either
the visual, auditory, or tactile modality). It should be
noted, however, that there were differences in both elec-
trodes and specific frequencies inside the beta band. We
have no ready explanation for this difference beside the
diverse focus of the research questions and the exper-
imental paradigm. However, in terms of quantity esti-
mations, both studies show the same pattern of effects,
namely, a relatively increased beta power for more difficult
quantity estimations (larger discrete quantities in Spitzer’s
study and larger ratio between two to-be-compared quan-
tities in the current study). This pattern is exactly what one
would expect for an effect related to the incremental
building of a numerical structure of nonsymbolic informa-
tion in the visual scene.

Further evidence for the notion of a link between beta-
band power and the nonsymbolic numerical system stems
from two relevant observations: (1) Behaviorally, the non-
symbolic numerical system relies mostly on visuospatial
cognitive abilities (Gallistel & Gelman, 2000) and involves
quantity approximations (e.g., Lyons, Ansari, et al., 2015;
Barth et al., 2008). Moreover, time and numerical estima-
tions have been suggested to be cognitively linked (Walsh,
2003). Thus, and because visuospatial (Costa et al., 2017;
Caplan et al., 2001), numerical (Spitzer et al., 2014), and
time (Wiener et al., 2018; Kononowicz & van Rijn, 2015)

estimations have all been scientifically linked with beta-
band power modulations, the current findings add further
support to the role of neuronal activation patterns in the
beta-band frequency in numerical estimations. (2) Current
control analysis of continuous visual properties (convex
hull, dot surface, density, size, and contour) of the dots,
which represent nonsymbolic information, revealed that
continuous magnitudes are not a predictive cue of re-
sponses. That is, participants responded primarily based
on numerical ratio, which is strongly linked with beta-band
oscillations.
Thus, this study links beta power enhancement only to

nonsymbolic rather than to general numerical com-
parisons and specifically to the nonsymbolic ratio effect.
That is, beta power may be linked to the accumulative
visuospatial building of nonsymbolic numerical informa-
tion on a mental number line. This is supported by the
idea that the ratio effect presents a number in an approx-
imate and compressed way on a mental number line, re-
sulting in the typical behavioral findings that quantities
are discriminated based on their given numerical ratio
(e.g., Dehaene, 2001). This idea has received additional
support from single cell recording studies in monkeys
(Nieder, 2016; Nieder & Dehaene, 2009). Namely,
Nieder and Dehaene (2009) and Nieder (2016) found sin-
gle neurons (i.e., “number neurons”) that showed maxi-
mum activity for a particular number (i.e., the preferred
numerosity). These “number neurons” showed a gradual
decrease of activity that was dependent on the ratio be-
tween the presented numerosity and the preferred nu-
merosity. Hence, our data may point to a link between
beta-band power and the formation of the nonsymbolic
mental number. This electrophysiological link displays
itself behaviorally as estimation, and cognitively as the
ratio effect.

The Possible Role of the Gamma Frequency Range
in Processing Numerical Symbols

In line with our hypothesis, EEG gamma-band power was
larger for symbolic numerically difficult comparisons (ratio
of 0.8) than for symbolic numerically easier ones (ratio of
0.2). The frequency range in which this effect occurs is
clearly distinct from that in which we observed effects re-
lated to nonsymbolic processing. Our data extends previous
reports indicating that gamma-band neuronal frequencies
play an instrumental role in binding the semantics of in-
dividual lexical items within a sentence (Rommers et al.,
2013; Wang, Zhu, & Bastiaansen, 2012) to the level of nu-
merical cognition. For example, Hald, Bastiaansen, and
Hagoort (2006) found an increase in gamma power in re-
sponse to a highly expected word presented in a sentence
context. This gamma increase was eliminated when the
word in the same position in the sentences was seman-
tically anomalous. Similarly, Peña and Melloni (2012)
found that gamma power increased only when Spanish
or Italian monolinguals listened to sentences in their
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own language, not when they listened to sentences spo-
ken in a phonologically related or unrelated language. As
such, current findings are in line with the hypothesis that
gamma-band neuronal activation patterns are involved in
the manipulation of symbolic numbers, possibly based
on individuals’ familiarity and fluency with these learnt
and linguistically based numbers. Based on both empirical
evidence and a computational model (Van Opstal, Gevers,
De Moor, & Verguts, 2008; Verguts & Van Opstal, 2005), in
the numerical field it was suggested that response selec-
tion mechanisms are sensitive to the relative frequency
with which humans encounter different numbers (fre-
quencies that were calculated to match those found in
human lexical corpi). That is, individuals’ familiarity and
the fluency with which they can manipulate symbolic
numbers may serve as the crucial link between basic nu-
merical skills (such as number comparison) and more
complex math abilities (see also Lyons, Nuerk, & Ansari,
2015). Thus, in our view, our data strengthen the notion
that gamma-band power is related to the creation of nu-
merical mental representation (e.g., mental number line)
at the symbolic level. As mentioned earlier, studies suggest
a link between gamma oscillations and different aspects of
language, including sublexical, phonological, lexical, as
well as syntactic information (e.g., Van Berkum et al.,
2004; for a review, see Kösem & van Wassenhove, 2017).
Therefore, within the language domain and based on pre-
vious findings (Vanbinst et al., 2016), it is suggested here
that basic symbolic numerical comparisons (studied in the
current research) involve cognitive sublinguistic pro-
cessing that are analogous, for example, to phonological
awareness in reading. As the link between gamma band
and symbolic numerical information is very novel, we
suggest exploring, for example, hemispheric differences
in future studies to explore the possible link between pho-
nological awareness and gamma signature.

Frequency-based Segregation of Symbolic and
Nonsymbolic Numerical Processing?

In the current within-participant between modality de-
sign, we replicated and extended the results of previous,
mostly nonnumerical cognition studies. Namely, here we
show evidence that gamma-band neuronal activations are
related to the symbolic level in numerical cognition,
whereas beta-band activations are related to the nonsym-
bolic numerical cognition.
Furthermore, as we hypothesized in the Introduction,

we observed the (theoretically motivated) pattern of
increasing beta power in the more difficult nonsymbolic
numerical comparisons, reflecting closer quantities on
the nonsymbolic mental number line. We did not ob-
serve such an increase across the nonsymbolic compari-
sons for gamma power. Oscillations at beta and gamma
frequencies are claimed to be particularly Effective for en-
gaging discrete neuronal populations in supporting the
transfer of packets of specific information among relevant

neuronal assemblies (da Silva, 2013). In this case, there
might be overlapping neuronal assemblies in the frontocen-
tral and parietal cortex. Hence, the current data are compat-
ible with the hypothesis of frequency-based segregation of
symbolic and nonsymbolic processing in a frontoparietal
numerical network. These data provide support for the
view that, during numerical processing, nonsymbolic and
symbolic information is being processed at different fre-
quencies. As mentioned in the Introduction, the necessity
for such a frequency-based segregation stems in part from
previous observations that neural networks for symbolic
and nonsymbolic numerical processing are largely spatially
overlapping (Sokolowski et al., 2017; Lyons, Ansari, et al.,
2015; Arsalidou & Taylor, 2011; Santens et al., 2010; Eger
et al., 2009; for a review see Eger, 2016). However, the
presently observed gamma and beta effects have clearly dis-
tinct scalp topographies (see the topographical maps in
Figure 2). Hence, it should be noted that though our study
supports the notion of distinct neural dynamics, it also
points at dissociation in location, in disagreement with
the spatially overlapping neural networks notion, presented
at length in the Introduction. gamma-band effects appear
over the frontocentral region, which is strongly compati-
ble with the notion that symbolic numerical processing is
the result of a dynamic interplay between parietal regions
(Ansari, Garcia, Lucas, Hamon, & Dhital, 2005) and fron-
tal areas involved in executive functions, memory, and
language. fMRI findings have shown that during human
development and during the acquisition of symbolic
numerical knowledge, there is a neural shift from a
strong involvement of frontal areas during childhood
to increasing engagement of parietal regions during
adulthood. This shift is possibly the result of the
increased automaticity in the processing of symbolic nu-
merical information, which in turn requires less recruit-
ment of frontal areas that are typically associated with
memory and executive functions. The current findings
show that, even in adulthood, frontal activation possibly
still exists in the form of neural induced gamma-band
responses.

The beta-band effects, instead, have a maximum effect
around the parietal lobe, which is strongly compatible
with the notion that nonsymbolic numerical processing
is involved with approximation. The different scalp topog-
raphies seem to suggest different underlying neuronal di-
poles. However, it is difficult to relate scalp topographies
to underlying source locations, as it has been well estab-
lished that electrical potentials from different sources mix
at the level of scalp EEG recordings and that small changes
in source orientation can have a large impact on scalp
topographies. Thus, EEG, with its spatial vagueness, is
not the method of choice for obtaining the sources of
the effects. Replication of the present findings with
methods that are well suited for source reconstruction,
such as MEG, would thus be important for revealing
the sources underlying the beta and gamma power
increases.
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In addition future studies could use methodologies
that will enable the analysis of neural synchronization.
Neuronal synchronization is a mechanism in which neu-
rons with similar properties can coordinate their dis-
charges (Uhlhaas et al., 2010; Ward, 2003). Thus, it
could be that brain regions activated by symbolic versus
nonsymbolic numerical information show increased neu-
ronal synchronization within certain frequency bands.

Conclusions

Our data demonstrate the existence of a functional dis-
sociation in the oscillatory dynamics of the EEG during
numerical processing: Power increases in the gamma
frequency range are observed only during symbolic nu-
merical comparisons. In contrast, power increases in
the beta frequency band are observed only during non-
symbolic comparisons. This functional dissociation is
compatible with the notion of a frequency-based segrega-
tion of symbolic and nonsymbolic numerical systems.
During numerical processing, symbolic and nonsymbolic
processing is represented by groups of neurons that are
activated at different frequencies to transiently couple in-
to functionally distinct networks.

APPENDIX A: EXTERNAL
STATISTICAL ANALYSIS

Appendix A1: The Entire Pre-P2p Time Window
and Beta Spectrum: Analysis of the Parietal
Cluster in a Broad Time (0–180) and Frequency
(12–30 Hz) Window

Repeated-measures ANOVA of the average beta power re-
vealed a significant effect for Task, F(1, 23) < 16.693, p<
.001, ηp

2 = .421, BF10 > 100,000, as beta power was high-
er in the ns task. This finding suggests that under a broad
time window and frequency range (i.e., compared with
the original more narrow analysis that can be found in
the Results section), the strength of the Task effect in-
creases as well. That is, BF rises from 9648 to over
100,000.

Nevertheless, no effect for Ratio, F(1, 23) < 1, ns, BF10 =
.445, or interaction between Task × Ratio, F(1, 23) < 1, ns,
BF10 = .18, were found.

Appendix A2: Gamma Power: Analysis of Frontal
Cluster in a Broad Time (0–180) Window

Repeated-measures ANOVA of the average gamma power
revealed a significant Task × Ratio interaction, F(1, 23) <
6.139, p < .05, ηp

2 = .211, BF10 = 4.663, with no effect for
Task, F(1, 23) < 1, ns, BF10 = .142, or Ratio, F(1, 23) =
1.189, ns, BF10 = .659.
Post hoc tests revealed that the source of the interaction

is a significant Ratio effect in the symbolic task, F(1, 23) <
4.315, p < .05, ηp

2 = .158, BF10 = 41.975, with greater
gamma power in the 0.8 ratio (ME = 172.756, SE =
6.041) compared with the 0.2 ratio (ME = 159.338, SE =
7.344). In contrast, no Ratio effect was found in the non-
symbolic task, F(1, 23) < 1, ns, BF10 = .167.

Appendix A3: Analysis of Parietal Cluster during
P2p Time Window

Gamma

Repeated-measures ANOVA of the average gamma power
revealed no significant effect for Task, F(1, 23) = 1.216, ns,
BF10 = .147; ratio, F(1, 23) < 1, ns, BF10 = .413; or inter-
action, F(1, 23) < 1, ns, BF10 = .158.

Beta

Repeated-measures ANOVA of the average beta power re-
vealed no significant effect for Task, F(1, 23) = 2.107, ns,
BF10 = 26.761; ratio, F(1, 23) < 1, ns, BF10 = .137; or
interaction, F(1, 23) < 1, ns, BF10 = .187.

Appendix A4: Analysis of Frontocentral Electrodes
during P2p Time Window

Gamma

Repeated-measure ANOVA of the average gamma power
revealed no significant effect for Task, F(1, 23) = 1.751,
ns, BF10 = .105; ratio, F(1, 23) < 1, ns, BF10 = .102; or
interaction, F(1, 23) < 1, ns, BF10 = .181.

Beta

Repeated-measures ANOVA of the average beta power re-
vealed no significant effect for Task, F(1, 23) < 1, ns, BF10
= .133; Ratio, F(1, 23) < 1, ns, BF10 = .1; or interaction, F
(1, 23) < 1, ns, BF10 = .142.
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APPENDIX B: P2p AVERAGE LATENCY AND
AMPLITUDE PER PARTICIPANT

Table B1. P2p—Amplitude

Participant
ID

Symbolic Ratio:
0.2 Amplitude

Symbolic Ratio:
0.8 Amplitude

Nonsymbolic Ratio:
0.2 Amplitude

Nonsymbolic Ratio:
0.8 Amplitude

106 −1.178 −0.771 1.957 2.176

107 0.715 2.451 1.269 2.600

108 −0.768 3.264 3.833 6.597

109 1.205 1.274 2.151 2.012

110 1.054 2.078 4.343 5.126

114 4.400 3.062 2.713 9.653

117 5.534 6.962 5.040 8.652

118 3.252 3.674 4.117 4.168

119 0.581 4.091 3.791 6.821

120 2.533 3.379 1.532 3.520

121 −0.902 2.511 2.118 3.167

122 4.554 5.100 8.015 8.802

124 6.247 6.442 5.267 5.994

126 1.150 3.742 4.537 3.830

130 4.276 7.192 7.537 9.071

131 −1.287 2.828 −0.611 −1.784

134 −0.154 −0.080 0.543 3.295

135 −0.761 1.272 1.916 4.523

140 3.350 2.364 3.622 3.197

142 2.600 2.699 3.559 4.435

143 6.471 5.424 3.216 2.202

145 0.333 1.656 3.474 2.573

148 2.785 2.263 3.260 4.194

149 0.944 3.380 5.380 5.645
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